3.4.16 \(\int \frac {(A+B \sin (e+f x)) (c+d \sin (e+f x))}{(a+a \sin (e+f x))^{3/2}} \, dx\) [316]

Optimal. Leaf size=133 \[ -\frac {(A c+3 B c+3 A d-7 B d) \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a+a \sin (e+f x)}}\right )}{2 \sqrt {2} a^{3/2} f}-\frac {(A-B) (c-d) \cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2}}-\frac {2 B d \cos (e+f x)}{a f \sqrt {a+a \sin (e+f x)}} \]

[Out]

-1/2*(A-B)*(c-d)*cos(f*x+e)/f/(a+a*sin(f*x+e))^(3/2)-1/4*(A*c+3*A*d+3*B*c-7*B*d)*arctanh(1/2*cos(f*x+e)*a^(1/2
)*2^(1/2)/(a+a*sin(f*x+e))^(1/2))/a^(3/2)/f*2^(1/2)-2*B*d*cos(f*x+e)/a/f/(a+a*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 133, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3047, 3098, 2830, 2728, 212} \begin {gather*} -\frac {(A c+3 A d+3 B c-7 B d) \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{2 \sqrt {2} a^{3/2} f}-\frac {(A-B) (c-d) \cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2}}-\frac {2 B d \cos (e+f x)}{a f \sqrt {a \sin (e+f x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((A + B*Sin[e + f*x])*(c + d*Sin[e + f*x]))/(a + a*Sin[e + f*x])^(3/2),x]

[Out]

-1/2*((A*c + 3*B*c + 3*A*d - 7*B*d)*ArcTanh[(Sqrt[a]*Cos[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]])])/(Sqrt[
2]*a^(3/2)*f) - ((A - B)*(c - d)*Cos[e + f*x])/(2*f*(a + a*Sin[e + f*x])^(3/2)) - (2*B*d*Cos[e + f*x])/(a*f*Sq
rt[a + a*Sin[e + f*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2830

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d
)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*S
in[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m
, -2^(-1)]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3098

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_
.)*(x_)]^2), x_Symbol] :> Simp[(A*b - a*B + b*C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(a*f*(2*m + 1))), x] + D
ist[1/(a^2*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[a*A*(m + 1) + m*(b*B - a*C) + b*C*(2*m + 1)*Sin[e
 + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {(A+B \sin (e+f x)) (c+d \sin (e+f x))}{(a+a \sin (e+f x))^{3/2}} \, dx &=\int \frac {A c+(B c+A d) \sin (e+f x)+B d \sin ^2(e+f x)}{(a+a \sin (e+f x))^{3/2}} \, dx\\ &=-\frac {(A-B) (c-d) \cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2}}-\frac {\int \frac {-\frac {1}{2} a (3 B (c-d)+A (c+3 d))-2 a B d \sin (e+f x)}{\sqrt {a+a \sin (e+f x)}} \, dx}{2 a^2}\\ &=-\frac {(A-B) (c-d) \cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2}}-\frac {2 B d \cos (e+f x)}{a f \sqrt {a+a \sin (e+f x)}}+\frac {(A c+3 B c+3 A d-7 B d) \int \frac {1}{\sqrt {a+a \sin (e+f x)}} \, dx}{4 a}\\ &=-\frac {(A-B) (c-d) \cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2}}-\frac {2 B d \cos (e+f x)}{a f \sqrt {a+a \sin (e+f x)}}-\frac {(A c+3 B c+3 A d-7 B d) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{2 a f}\\ &=-\frac {(A c+3 B c+3 A d-7 B d) \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a+a \sin (e+f x)}}\right )}{2 \sqrt {2} a^{3/2} f}-\frac {(A-B) (c-d) \cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2}}-\frac {2 B d \cos (e+f x)}{a f \sqrt {a+a \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.32, size = 246, normalized size = 1.85 \begin {gather*} \frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (2 (A-B) (c-d) \sin \left (\frac {1}{2} (e+f x)\right )-(A-B) (c-d) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )+(1+i) (-1)^{3/4} (A c+3 B c+3 A d-7 B d) \tanh ^{-1}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \left (-1+\tan \left (\frac {1}{4} (e+f x)\right )\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^2-4 B d \cos \left (\frac {1}{2} (e+f x)\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^2+4 B d \sin \left (\frac {1}{2} (e+f x)\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^2\right )}{2 f (a (1+\sin (e+f x)))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((A + B*Sin[e + f*x])*(c + d*Sin[e + f*x]))/(a + a*Sin[e + f*x])^(3/2),x]

[Out]

((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(2*(A - B)*(c - d)*Sin[(e + f*x)/2] - (A - B)*(c - d)*(Cos[(e + f*x)/2]
 + Sin[(e + f*x)/2]) + (1 + I)*(-1)^(3/4)*(A*c + 3*B*c + 3*A*d - 7*B*d)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + T
an[(e + f*x)/4])]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^2 - 4*B*d*Cos[(e + f*x)/2]*(Cos[(e + f*x)/2] + Sin[(e
+ f*x)/2])^2 + 4*B*d*Sin[(e + f*x)/2]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^2))/(2*f*(a*(1 + Sin[e + f*x]))^(3
/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(388\) vs. \(2(116)=232\).
time = 6.89, size = 389, normalized size = 2.92

method result size
default \(-\frac {\left (\sin \left (f x +e \right ) \left (A \sqrt {2}\, \arctanh \left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a c +3 A \sqrt {2}\, \arctanh \left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a d +3 B \sqrt {2}\, \arctanh \left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a c -7 B \sqrt {2}\, \arctanh \left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a d +8 B \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a}\, d \right )+A \sqrt {2}\, \arctanh \left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a c +3 A \sqrt {2}\, \arctanh \left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a d +3 B \sqrt {2}\, \arctanh \left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a c -7 B \sqrt {2}\, \arctanh \left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a d +2 A \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a}\, c -2 A \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a}\, d -2 B \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a}\, c +10 B \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a}\, d \right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}}{4 a^{\frac {5}{2}} \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f}\) \(389\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sin(f*x+e))*(c+d*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/4/a^(5/2)*(sin(f*x+e)*(A*2^(1/2)*arctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*a*c+3*A*2^(1/2)*arctan
h(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*a*d+3*B*2^(1/2)*arctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/
2))*a*c-7*B*2^(1/2)*arctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*a*d+8*B*(a-a*sin(f*x+e))^(1/2)*a^(1/2)
*d)+A*2^(1/2)*arctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*a*c+3*A*2^(1/2)*arctanh(1/2*(a-a*sin(f*x+e))
^(1/2)*2^(1/2)/a^(1/2))*a*d+3*B*2^(1/2)*arctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*a*c-7*B*2^(1/2)*ar
ctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*a*d+2*A*(a-a*sin(f*x+e))^(1/2)*a^(1/2)*c-2*A*(a-a*sin(f*x+e)
)^(1/2)*a^(1/2)*d-2*B*(a-a*sin(f*x+e))^(1/2)*a^(1/2)*c+10*B*(a-a*sin(f*x+e))^(1/2)*a^(1/2)*d)*(-a*(sin(f*x+e)-
1))^(1/2)/cos(f*x+e)/(a+a*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(c+d*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)*(d*sin(f*x + e) + c)/(a*sin(f*x + e) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 431 vs. \(2 (122) = 244\).
time = 0.42, size = 431, normalized size = 3.24 \begin {gather*} -\frac {\sqrt {2} {\left ({\left ({\left (A + 3 \, B\right )} c + {\left (3 \, A - 7 \, B\right )} d\right )} \cos \left (f x + e\right )^{2} - 2 \, {\left (A + 3 \, B\right )} c - 2 \, {\left (3 \, A - 7 \, B\right )} d - {\left ({\left (A + 3 \, B\right )} c + {\left (3 \, A - 7 \, B\right )} d\right )} \cos \left (f x + e\right ) - {\left (2 \, {\left (A + 3 \, B\right )} c + 2 \, {\left (3 \, A - 7 \, B\right )} d + {\left ({\left (A + 3 \, B\right )} c + {\left (3 \, A - 7 \, B\right )} d\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )\right )} \sqrt {a} \log \left (-\frac {a \cos \left (f x + e\right )^{2} + 2 \, \sqrt {2} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {a} {\left (\cos \left (f x + e\right ) - \sin \left (f x + e\right ) + 1\right )} + 3 \, a \cos \left (f x + e\right ) - {\left (a \cos \left (f x + e\right ) - 2 \, a\right )} \sin \left (f x + e\right ) + 2 \, a}{\cos \left (f x + e\right )^{2} - {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right ) - 4 \, {\left (4 \, B d \cos \left (f x + e\right )^{2} + {\left (A - B\right )} c - {\left (A - B\right )} d + {\left ({\left (A - B\right )} c - {\left (A - 5 \, B\right )} d\right )} \cos \left (f x + e\right ) + {\left (4 \, B d \cos \left (f x + e\right ) - {\left (A - B\right )} c + {\left (A - B\right )} d\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a}}{8 \, {\left (a^{2} f \cos \left (f x + e\right )^{2} - a^{2} f \cos \left (f x + e\right ) - 2 \, a^{2} f - {\left (a^{2} f \cos \left (f x + e\right ) + 2 \, a^{2} f\right )} \sin \left (f x + e\right )\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(c+d*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

-1/8*(sqrt(2)*(((A + 3*B)*c + (3*A - 7*B)*d)*cos(f*x + e)^2 - 2*(A + 3*B)*c - 2*(3*A - 7*B)*d - ((A + 3*B)*c +
 (3*A - 7*B)*d)*cos(f*x + e) - (2*(A + 3*B)*c + 2*(3*A - 7*B)*d + ((A + 3*B)*c + (3*A - 7*B)*d)*cos(f*x + e))*
sin(f*x + e))*sqrt(a)*log(-(a*cos(f*x + e)^2 + 2*sqrt(2)*sqrt(a*sin(f*x + e) + a)*sqrt(a)*(cos(f*x + e) - sin(
f*x + e) + 1) + 3*a*cos(f*x + e) - (a*cos(f*x + e) - 2*a)*sin(f*x + e) + 2*a)/(cos(f*x + e)^2 - (cos(f*x + e)
+ 2)*sin(f*x + e) - cos(f*x + e) - 2)) - 4*(4*B*d*cos(f*x + e)^2 + (A - B)*c - (A - B)*d + ((A - B)*c - (A - 5
*B)*d)*cos(f*x + e) + (4*B*d*cos(f*x + e) - (A - B)*c + (A - B)*d)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a))/(a^
2*f*cos(f*x + e)^2 - a^2*f*cos(f*x + e) - 2*a^2*f - (a^2*f*cos(f*x + e) + 2*a^2*f)*sin(f*x + e))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (A + B \sin {\left (e + f x \right )}\right ) \left (c + d \sin {\left (e + f x \right )}\right )}{\left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(c+d*sin(f*x+e))/(a+a*sin(f*x+e))**(3/2),x)

[Out]

Integral((A + B*sin(e + f*x))*(c + d*sin(e + f*x))/(a*(sin(e + f*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(c+d*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(co

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (A+B\,\sin \left (e+f\,x\right )\right )\,\left (c+d\,\sin \left (e+f\,x\right )\right )}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*sin(e + f*x))*(c + d*sin(e + f*x)))/(a + a*sin(e + f*x))^(3/2),x)

[Out]

int(((A + B*sin(e + f*x))*(c + d*sin(e + f*x)))/(a + a*sin(e + f*x))^(3/2), x)

________________________________________________________________________________________